BigHouse: A Simulation Infrastructure for Data Center Systems

David Meisner, Junjie Wu, Thomas F. Wenisch
The University of Michigan

ISPASS 2012
Data center research is challenging

- Tools only evaluate a single component
 - Processor, caches, DRAM, disks, etc...
- Evaluating an entire server is difficult
 - Requires coordination of many slow tools
 - Models far too much detail

Simulations finish just after PhD awarded...
Requirements for data center simulation

• Handle scope of data center problems
 – E.g., Performance, power, thermal, reliability
 – **Goal**: General modeling infrastructure

• Publicly distributable
 – **Goal**: Does not rely on proprietary binaries

• Needs to simulate 1 to 10,000 servers
 – **Goal**: Scalable to clusters of machines

Solution greatly differs from traditional systems tools
The BigHouse Simulator

• Framework for simulating data center systems
 – Discrete-event simulation w/ statistical rigor
 – Easily extensible to new domains

• Claim: Queuing theory is correct abstraction
 – Simulate at the granularity of requests/tasks
 (i.e., request enters/exits a server)
 – Represent workloads as statistical distributions
 – Stochastic approach allows parallelization

Can simulate systems in minutes instead of hours or days
Outline

• Introduction
• BigHouse
• Case Studies
• Evaluation
• Conclusion
BigHouse Overview

Stochastic queuing simulation methodology:
1. Workload characterization
2. System modeling
3. Statistically-rigorous discrete-event simulation

BigHouse implements Step 3
BigHouse Features

BigHouse provides:

- Base objects for modeling (extend with object-oriented programming)
- *Statistical probes* to instrument object metrics (per-task)
- Statistically-rigorous sampling of outputs w/ parallel histogram approx.
- Automatic parallelization across cores/machines

User provides:

- Model to represent new behavior (e.g., Markov chain to modulate queue)
- New workload distributions (or reuse existing workload suite)

User burden is minimized to modeling new behaviors

Statistical tricks are encapsulated into simulator
Workload Characterization

Interarrival Times (Live Service)

Service Times (Offline)

- May need to capture more complicated effect (e.g., correlation)
- Similar to statistical simulation [Oskin 2000, Eeckhout 2004]

Used to create a stochastically generated trace file
System Modeling

Observations of system model fed to statistical probes
Statistics Sub-system

Power Model

150W

Statistics Manager

Probes

Sojourn Time

Server Power

10ms

Automatically determines simulation convergence
Outline

• Introduction
• BigHouse
• Case Studies
• Evaluation
• Conclusion
Case Study 1: Google Web search [ISCA2011]

What happens if we change power-perf. of leaf nodes?
Web Search Model

CPU and Memory performance modulate service rate

\[
\text{Power} = F(S_{\text{Mem}}, S_{\text{CPU}})
\]

\[
\text{Slowdown} = F(S_{\text{Mem}}, S_{\text{CPU}})
\]
Web Search Model Validation

Simulation accurately predicts saturation points
Average error of 9.2%
Case Study 2: Power capping

- Better use of power infrastructure = large gains
 - Throttle power w/ DVFS during infrequent spikes
 - Power Capping - ~40% more servers [Fan '07]

How to model power capping system w/ Bighouse?
Power Capping Model

Power Models
\[P_{\text{Server}} = f(U_{\text{server}}, f_{\text{cpu}}) \]
\[P_{\text{Rack}} = \sum P_{\text{server}}[i] \]

Performance Models
\[\text{Service_rate} = f(f_{\text{cpu}}) \]
\[\text{Latency} = f(f_{\text{cpu}}) + \text{Queuing} \]

Power Management Policy
Set \(f_{\text{cpu}} \) s.t. \(P_{\text{server}} \propto U_{\text{server}} \)

CPU and Memory performance modulate service rate
Outline

- Introduction
- BigHouse
- Case Studies
- Evaluation
- Conclusion
Scalability

10,000 server systems can be simulated in hours
Parallel execution

• Sims can be distributed across cores/servers

Can achieve ~7x speedup on 16 slave for a single sim.
Conclusion

• BigHouse: Simulation tool for data center systems
 – Turnaround of hours rather than days
 – Statistically rigorous
 – Parallelizable

• Community engagement
 – Workload repository
 – New system models
 – Validation at scale
How to get BigHouse

- Download at: www.eecs.umich.edu/bighouse
- Will include:
 - Base server models
 - Workload distributions (inc. Google Web search)
- Will be available in ~1 week
Thank you!