PLSK vs. DPSK in Four-Wave Mixing Crosstalk

Prof. Mohammed N. Islam
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI
&
Founder and Chief Technology Officer
Xtera Communications, Inc., Allen, TX

Jaeyoun Kim
Research Fellow
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI
What is PLSK (also referred to as PolSK)?
- One state of polarization (say vertical) corresponds to a "1", while the orthogonal polarization state (say horizontal) corresponds to a "0"
- Relative orthogonality is important for detection

Advantages of PLSK scheme
- Reduced sensitivity to nonlinear effects
- 3-dB improvement in receiver sensitivity over IM/DD

Commercially available from www.jgkb.com
PLSK Receivers

Type A
- Simple
- Requires polarization control
- Only for binary PLSK

Type B
- Complicated (requires differential detection and polarization cubes)
- Full extraction of Stokes parameters

Type C
- No differential detection
- Full extraction of Stokes parameters
- Needs four arms and post-processing
• What are PSK and DPSK?
 – The phase shift keying (PSK) scheme utilizes the phase of carrier waves as the information bearing parameter
 – The DPSK scheme transmits information through the phase difference of adjacent symbols (0: zero phase shift, 1: phase shift)

• Advantages of DPSK scheme
 – Reduced sensitivity to nonlinear effects
 – 3-dB improvement in receiver sensitivity over IM/DD
DPSK Transmitters

RZ DPSK Transmitter (double stage)

NRZ DPSK Transmitter (single stage)

Incoming carrier → Modulated carrier
DPSK Receiver

Modulated carrier

Asymmetric Mach-Zehnder Interferometer

Additional delay (equivalent to one bit time slot)

Demodulated signal

0 1
Problem Statement

• Hypothesis
 – For eavesdropping through FWM in a transmission fiber, using PLSK format leads to a loss of distinction between a “1” and a “0” due to the λ-dependent polarization scrambling
 – Since FWM is a phase conjugation process, the phase and DPSK format information is preserved, despite the polarization scrambling

• To prove the hypothesis
 – We simulated the generation of a FWM sideband and examined the power distribution over the two polarization axes and the orthogonality between the “1” and “0” signals along the length of the fiber
Simulation Procedures

- Coupled wave equations for FWM

\[
\frac{\partial E_{k,p}}{\partial z} = i \cdot \frac{D_p D_f}{3} \left[D_p D_f E_{j,p} E_{j,p}^* E_{k,p} + 2 \cdot E_{j,p}^* E_{k,p} E_{l,p} \right]
\]

- Six coupled wave equations were solved by Runge-Kutta method
 - Three waves: pump, signal, conjugate, two orthogonal SOPs: x and y
 - Einstein summation \((j,k,l = p,s,c, p = x,y)\) over all possible combinations
- Degeneracy factors
 - \(D_p = 3\) when all three waves are co-polarized, otherwise \(D_p = 1\)
 - \(D_f = 2\) when all three waves are different in frequency, otherwise \(D_f = 1\)
- Nonlinear effects by weak conjugate wave onto pump and signals were ignored
- To accelerate the nonlinear effects, high pump (14.7 dBm) and signal (10 dBm) power were assumed
• SMF-28 type fiber
 – Fused silica, 4 micron core radius, $g = 2.2 \text{ km}^{-1}\text{W}^{-1}$

• Polarization characteristics
 – Birefringence $\sim 10^{-7}$
 – Random polarization mode coupling
 » Mean coupling length $L_c = 100 \text{ m}$
 » Birefringence axis rotation: random within $\pm \pi/8 \text{ rad}$

– Explicit reports on the g-dependence of polarization mode coupling (manifest by PMD) were not found from literature searches
– Random couplings for all three waves were assumed
– Ensemble average over 200 samples taken to obtain results
• Assumptions for simulations: *Worst-case scenario*
 – Perfectly phase matched case considered
 – Signal and pump are co-polarized (for “1”) at input

• Calculated growth of conjugate waves

 – Signal and pump were co-polarized along the x-axis
 – Due to the random polarization coupling, an orthogonally polarized y-component was generated at the conjugate wavelength
 – In 4.5 km, the two components become approximately equalized in power

• Degradation of Orthogonality

 – Two originally orthogonal signals were propagated under FWM
 – Even though the two corresponding conjugate waves have equal amount of power in both axes, they can still be decoded if they were orthogonal
 – Simulation results show that the wavelength-dependent polarization scrambling, in combination with FWM, randomizes and degrades the orthogonality

\[
\begin{align*}
\text{Conjugate #1 (C1)} & \\
\text{x-polarized pump} & \\
\text{Signal #1} & \\
\text{x-polarized} & \\
\text{Signal #2} & \\
\text{y-polarized} & \\
\text{Conjugate #2 (C2)} & \\
\end{align*}
\]

\[
\begin{align*}
\text{\begin{array}{c}
\text{C1} \cdot & \text{C2}^* \\
\text{\mid C1\mid \cdot \mid C2\mid} \\
\end{array}}
\end{align*}
\]

\[
\begin{align*}
\text{Propagation Distance [m]} & \\
0 & \\
1000 & \\
2000 & \\
3000 & \\
4000 & \\
0.0 & \\
0.2 & \\
0.4 & \\
0.6 & \\
0.8 & \\
1.0 & \\
\end{align*}
\]
Readability of FWM-generated Conjugate Wave

- **Case 1: DPSK**
 - No phase scrambling due to FWM, just conjugation
 - Readability = Conversion efficiency for one component

- **Case 2: PLSK**
 - The readability of the conjugated signal decreases as the power contrast between the two polarization component reduces
 - Readability is defined as:

\[
\text{Readability} = \frac{P_{cx}}{P_{sx,\text{ini}}^0} \cdot \frac{P_{cx}}{P_{cy}^0}
\]
Summary

• PLSK and DPSK
 – Both schemes mitigate nonlinear effects and boost receiver sensitivity
 – Transmitters for both schemes have comparable complexity
 – PLSK receivers are more complex than DPSK counterparts

• In case of eavesdropping using FWM
 – PLSK exhibits significantly lower readability beyond ~1km
 – DPSK was not affected due to the lack of phase scrambling mechanisms

• Main cause of the readability degradation in PLSK
 – Wavelength-dependent polarization scrambling

• Preliminary results so far. Future work includes
 – Clarifying the wavelength dependence of polarization scrambling
 – PMD-impact on the performance of PLSK scheme